Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 123: 155249, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38056144

ABSTRACT

BACKGROUND: Astaxanthin (AST) is a natural compound with anti-inflammatory/immunomodulatory properties that has been found to have probiotic properties. However, the role and mechanism of AST in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) are still not fully understood. PURPOSE: The aim of this study was to evaluate the effect of AST on CP/CPPS and elucidate the mediating role of the gut microbiota. MATERIALS AND METHODS: An experimental autoimmune prostatitis (EAP) mouse model was utilized to test the potential role of AST on CP/CPPS. Antibiotic cocktail (ABX) treatment and fecal microbiota transplantation (FMT) were used to elucidate the gut microbiota-mediated effects on AST. In addition, 16S rRNA gene sequencing and qRT-PCR analyses were used to analyze changes in the gut microbiota of EAP mice and CP/CPPS patients. Finally, the mechanism by which AST exerts a protective effect on CP/CPPS was explored by untargeted metabolomics and gut barrier function assays. RESULTS: Oral administration of AST reduced prostate inflammation scores, alleviated tactile sensitization of the pelvic region in EAP mice, reduced CD4+ T cell and CD68+ macrophage infiltration in the prostatic interstitium, and inhibited the up-regulation of systemic and localized pain/pro-inflammatory mediators in the prostate. After ABX, the protective effect of AST against CP/CPPS was attenuated, whereas colonization with fecal bacteria from AST-treated EAP mice alleviated CP/CPPS. 16S rRNA gene sequencing and qRT-PCR analyses showed that Akkermansia muciniphila in the feces of EAP mice and CP/CPPS patients showed a trend toward a decrease, which was associated with poor progression of CP/CPPS. In contrast, oral administration of AST increased the relative abundance of A. muciniphila, and oral supplementation with A. muciniphila also alleviated inflammation and pain in EAP mice. Finally, we demonstrated that both AST and A. muciniphila interventions increased serum levels of SCFAs acetate, up-regulated expression of colonic tight junction markers, and decreased serum lipopolysaccharide levels in EAP mice. CONCLUSION: Our results showed that AST improved CP/CPPS by up-regulating A. muciniphila, which provides new potentially effective strategies and ideas for CP/CPPS management.


Subject(s)
Chronic Pain , Prostatitis , Humans , Male , Mice , Animals , Prostatitis/drug therapy , RNA, Ribosomal, 16S , Inflammation/drug therapy , Pelvic Pain/drug therapy , Pelvic Pain/metabolism , Intestines , Akkermansia , Xanthophylls
2.
Hereditas ; 160(1): 1, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36635779

ABSTRACT

BACKGROUND: The response of advanced clear cell renal cell carcinoma (ccRCC) to immunotherapy is still not durable, suggesting that the immune landscape of ccRCC still needs to be refined, especially as some molecules that have synergistic effects with immune checkpoint genes need to be explored. METHODS: The expression levels of CENPM and its relationship with clinicopathological features were explored using the ccRCC dataset from TCGA and GEO databases. Quantitative polymerase chain reaction (qPCR) analysis was performed to validate the expression of CENPM in renal cancer cell lines. Kaplan-Meier analysis, COX regression analysis and Nomogram construction were used to systematically evaluate the prognostic potential of CENPM in ccRCC. Besides, single gene correlation analysis, protein-protein interaction (PPI) network, genetic ontology (GO), kyoto encyclopedia of genes and genomes (KEGG) and gene set enrichment analysis (GSEA) were used to predict the biological behaviour of CENPM and the possible signalling pathways involved. Finally, a comprehensive analysis of the crosstalk between CENPM and immune features in the tumor microenvironment was performed based on the ssGSEA algorithm, the tumor immune dysfunction and exclusion (TIDE) algorithm, the TIMER2.0 database and the TISIDB database. RESULTS: CENPM was significantly upregulated in ccRCC tissues and renal cancer cell lines and was closely associated with poor clinicopathological features and prognosis. Pathway enrichment analysis revealed that CENPM may be involved in the regulation of the cell cycle in ccRCC and may have some crosstalk with the immune microenvironment in tumors. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. The ssGSEA algorithm, CIBERSOPT algorithm suggests that CENPM is associated with suppressor immune cells in ccRCC such as regulatory T cells. Furthermore, the TISIDB database provides evidence that not only CENPM is positively associated with immune checkpoint genes such as CTLA4, PDCD1, LAG3, TIGIT, but also chemokines and receptors (such as CCL5, CXCL13, CXCR3, CXCR5) may be responsible for the malignant phenotype of CENPM in ccRCC. Meanwhile, predictions based on the TIDE algorithm support that patients with high CENPM expression have a worse response to immunotherapy. CONCLUSIONS: The upregulation of CENPM in ccRCC predicts a poor clinical outcome, and this malignant phenotype may be associated with its exacerbation of the immunosuppressive state in the tumor microenvironment.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Cell Cycle Proteins , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Transcriptional Activation , Tumor Microenvironment/genetics , Up-Regulation , Cell Cycle Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...